
We close this section by giving a proof of the first part of the Second Derivatives Test.
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (A) We compute the second-order directional derivative of in
the direction of . The first-order derivative is given by Theorem 14.6.3:

Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are con-
tinuous functions, so there is a disk with center and radius such that

and whenever is in . Therefore, by looking at Equation
10, we see that whenever is in . This means that if is the curve
obtained by intersecting the graph of with the vertical plane through in
the direction of , then is concave upward on an interval of length . This is true in
the direction of every vector , so if we restrict to lie in , the graph of lies
above its horizontal tangent plane at . Thus whenever is in .
This shows that is a local minimum. Mf !a, b"
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reasoning. Then use the Second Derivatives Test to confirm your
predictions.
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Suppose is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?
(a)
(b)

2. Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say 
about t?
(a)
(b)
(c)

3–4 Use the level curves in the figure to predict the location of 
the critical points of and whether has a saddle point or a 
local maximum or minimum at each critical point. Explain your 

ff
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22.

23. ,
,

24. ,
,

; 25–28 Use a graphing device as in Example 4 (or Newton’s
method or a rootfinder) to find the critical points of correct to
three decimal places. Then classify the critical points and find the
highest or lowest points on the graph.

25.

26.

27.

28.

29–36 Find the absolute maximum and minimum values of on
the set .

29. , is the closed triangular region
with vertices , , and 

30. , is the closed triangular
region with vertices , , and 

,

32. ,

33. ,

34. ,

35. ,

36. , is the quadrilateral
whose vertices are , , , and .

; 37. For functions of one variable it is impossible for a continuous
function to have two local maxima and no local minimum.
But for functions of two variables such functions exist. Show
that the function

has only two critical points, but has local maxima at both 
of them. Then use a computer to produce a graph with a 
carefully chosen domain and viewpoint to see how this is
possible.

; 38. If a function of one variable is continuous on an interval and
has only one critical number, then a local maximum has to be 
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5–18 Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11.

12.

14.

15.

16.

17. ,

18. , ,

19. Show that has an infinite
number of critical points and that at each one. Then
show that has a local (and absolute) minimum at each 
critical point.

20. Show that has maximum values at
and minimum values at . Show 

also that has infinitely many other critical points and 
at each of them. Which of them give rise to maximum
values? Minimum values? Saddle points?

; 21–24 Use a graph and/or level curves to estimate the local 
maximum and minimum values and saddle point(s) of the 
function. Then use calculus to find these values precisely.
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(b) Find the dimensions that minimize heat loss. (Check both
the critical points and the points on the boundary of the
domain.)

(c) Could you design a building with even less heat loss 
if the restrictions on the lengths of the walls were removed?

53. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

54. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or BO),
O (OO), and AB. The Hardy-Weinberg Law states that the pro-
portion of individuals in a population who carry two different
alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that is
at most .

55. Suppose that a scientist has reason to believe that two quan-
tities and are related linearly, that is, , at least
approximately, for some values of and . The scientist
performs an experiment and collects data in the form of points

, , , and then plots these points. The
points don’t lie exactly on a straight line, so the scientist wants
to find constants and so that the line “fits” the
points as well as possible. (See the figure.)

Let be the vertical deviation of the point
from the line. The method of least squares determines

and so as to minimize , the sum of the squares of
these deviations. Show that, according to this method, the line
of best fit is obtained when

Thus the line is found by solving these two equations in the
two unknowns and . (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

56. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.!1, 2, 3"

bm

 m +
n

i!1
 xi2 % b +

n

i!1
 xi ! +

n

i!1
 xiyi

 m +
n

i!1
 xi % bn ! +

n

i!1
 yi

,n
i!1 di2bm

!xi, yi"
di ! yi $ !mxi % b"

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0

y ! mx % bbm

. . . , !xn, yn "!x2, y2 "!x1, y1"

bm
y ! mx % byx

2
3

Pp % q % r ! 1
rqp

P ! 2pq % 2pr % 2rq

L

an absolute maximum. But this is not true for functions of two
variables. Show that the function

has exactly one critical point, and that has a local maximum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how this is possible.

39. Find the shortest distance from the point to the 
plane .

40. Find the point on the plane that is closest to the
point .

Find the points on the cone that are closest to the
point .

42. Find the points on the surface that are closest to
the origin.

Find three positive numbers whose sum is 100 and whose 
product is a maximum.

44. Find three positive numbers whose sum is 12 and the sum of
whose squares is as small as possible.

45. Find the maximum volume of a rectangular box that is
inscribed in a sphere of radius .

46. Find the dimensions of the box with volume that has
minimal surface area.

47. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

48. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

49. Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edges is a constant .

50. The base of an aquarium with given volume is made of slate
and the sides are made of glass. If slate costs five times as
much (per unit area) as glass, find the dimensions of the aquar-
ium that minimize the cost of the materials.

A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

52. A rectangular building is being designed to minimize 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the floor at a rate of per day, and

the roof at a rate of per day. Each wall must be at
least 30 m long, the height must be at least 4 m, and the
volume must be exactly .
(a) Find and sketch the domain of the heat loss as a function of

the lengths of the sides.
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For this project we locate a trash dumpster in order to study its shape and construction. We 
then attempt to determine the dimensions of a container of similar design that minimize 
construction cost.
1. First locate a trash dumpster in your area. Carefully study and describe all details of its con-

struction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimensions
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:
N The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets,

which cost $0.70 per square foot (including any required cuts or bends).
N The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90

per square foot.
N Lids cost approximately $50.00 each, regardless of dimensions.
N Welding costs approximately $0.18 per foot for material and labor combined.

Give justification of any further assumptions or simplifications made of the details of 
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the dumpster? If so, describe the savings that
would result.

DESIGNING A DUMPSTERA P P L I E D
P R O J E C T
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The Taylor polynomial approximation to functions of one variable that we discussed in Chap-
ter 11 can be extended to functions of two or more variables. Here we investigate quadratic
approximations to functions of two variables and use them to give insight into the Second 
Derivatives Test for classifying critical points.

In Section 14.4 we discussed the linearization of a function of two variables at a 
point :

Recall that the graph of is the tangent plane to the surface at and the
corresponding linear approximation is . The linearization is also called the
first-degree Taylor polynomial of at .

1. If has continuous second-order partial derivatives at , then the second-degree Taylor
polynomial of at is

and the approximation is called the quadratic approximation to at .
Verify that has the same first- and second-order partial derivatives as at !a, b".fQ

!a, b"ff !x, y" - Q!x, y"
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QUADRATIC APPROXIMATIONS AND CRITICAL POINTSD I S C O V E R Y
P R O J E C T
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2. (a) Find the first- and second-degree Taylor polynomials and of 
at (0, 0).

; (b) Graph , , and . Comment on how well and approximate .

3. (a) Find the first- and second-degree Taylor polynomials and for at (1, 0).
(b) Compare the values of , , and at (0.9, 0.1).

; (c) Graph , , and . Comment on how well and approximate .

4. In this problem we analyze the behavior of the polynomial 
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(a) By completing the square, show that if , then

(b) Let . Show that if and , then has a local minimum 
at (0, 0).

(c) Show that if and , then has a local maximum at (0, 0).
(d) Show that if , then (0, 0) is a saddle point.

5. (a) Suppose is any function with continuous second-order partial derivatives such that
and (0, 0) is a critical point of . Write an expression for the second-degree

Taylor polynomial, , of at (0, 0).
(b) What can you conclude about from Problem 4?
(c) In view of the quadratic approximation , what does part (b) suggest 

about ?f
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LAGRANGE MULTIPLIERS

In Example 6 in Section 14.7 we maximized a volume function subject to the
constraint , which expressed the side condition that the surface area
was 12 m . In this section we present Lagrange’s method for maximizing or minimizing 
a general function subject to a constraint (or side condition) of the form

.
It’s easier to explain the geometric basis of Lagrange’s method for functions of two

variables. So we start by trying to find the extreme values of subject to a constraint
of the form . In other words, we seek the extreme values of when the
point is restricted to lie on the level curve . Figure 1 shows this curve
together with several level curves of . These have the equations where ,

, , , . To maximize subject to is to find the largest value of such
that the level curve intersects . It appears from Figure 1 that this
happens when these curves just touch each other, that is, when they have a common tan-
gent line. (Otherwise, the value of c could be increased further.) This means that the nor-
mal lines at the point where they touch are identical. So the gradient vectors are
parallel; that is, for some scalar .

This kind of argument also applies to the problem of finding the extreme values of
subject to the constraint . Thus the point is restricted to lie

on the level surface with equation . Instead of the level curves in Figure 1,
we consider the level surfaces and argue that if the maximum value of 
is , then the level surface is tangent to the level surface

and so the corresponding gradient vectors are parallel.t!x, y, z" ! k
f !x, y, z" ! cf !x0, y0, z0 " ! c

ff !x, y, z" ! c
t!x, y, z" ! kS

!x, y, z"t!x, y, z" ! kf !x, y, z"

%& f !x0, y0 " ! % &t!x0, y0 "
!x0, y0 "

t!x, y" ! kf !x, y" ! c
ct!x, y" ! kf !x, y"111098
c ! 7f !x, y" ! c,f

t!x, y" ! k!x, y"
f !x, y"t!x, y" ! k

f !x, y"

t!x, y, z" ! k
f !x, y, z"

2
2xz $ 2yz $ xy ! 12

V ! xyz

14.8

f(x, y)=11
f(x, y)=10
f(x, y)=9
f(x, y)=8
f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

Visual 14.8 animates Figure 1 for
both level curves and level surfaces.
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